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J. Phys. A: Math. Gen. 14 (1981) 797-808. Printed in Great Britain 

Complementary variational principles and 
variational-iterative principles 

B L Burrows? and A J Perks$ 
t Department of Mathematics, North Staffordshire Polytechnic, Beaconside, 
Stafford ST18 OAD, UK 
$ GEC Measurements Ltd, Stafford, UK 

Received 3 July 1980, in final form 29 September 1980 

Abstract. Complementary variational principles for the solution of certain linear equations 
are developed. It is shown that these may be used iteratively for the solution of nonlinear 
equations. Examples are presented with applications in particle theory, electromagnetic 
theory, communication theory and the Thomas-Fermi statistical theory for atoms. 

1. Introduction 

In previous papers (Burrows and Perks 1977, 1979) complementary variational prin- 
ciples for the equation 

T4 =f (1.1) 

in a suitably chosen real complete Hilbert space H have been introduced where T is a 
completely continuous, self-adjoint linear operator and f is some function belonging to 
H. These principles provide upper and lower bounds for 

(4 If) (1.2) 
where ( ) denotes the inner product of H and the theory has been applied to quantum 
mechanical scattering problems. This theory is described in 8 2 of this paper and is 
applied to the solution of an integral equation which arises in the Kirkwood-Riseman 
theory of intrinsic viscosities and diffusion constants (Kirkwood and Riseman 1948). 

The main purpose of this paper is to extend these calculations to deal with equations 
of the form 

T4 =f(4) (1.3) 
where f may be a nonlinear function of 4 or more generally 

T4 = f ( 4 ) - L 4  (1.4) 
where L is a linear operator. Complementary variational principles for the solution of 
equation (1.3) have been introduced by Arthurs et a1 (see Arthurs 1970, Arthurs and 
Robinson 1969a,b, Arthurs and Anderson 1977, Arthurs and Coles 1977) providing 
upper and lower bounds to a functional when certain conditions are satisfied, one of 
which is 

df/d4 < 0. (1.5) 
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In this paper we use a variational-iterative scheme to deal with the problems provided 
by equation (1.3) or (1.4) so that the simpler linear theory described in 0 2 is applied to a 
sequence of equations, the solutions of which converge to the solution of equation (1.3) 
or (1.4). The theory is described in § 3 arid applied to three examples. For two of the 
examples the original problem is rewritten so that it has the form of equation (1.3) or 
(1.4) where the self-adjoint operator T has a discrete spectrum. This condition is 
necessary for the application of the linear theory described in § 2. 

2. The linear theory 

Consider the functional 

J ( A ,  @)=(@lT@)-2(@lf)+A(TQ,-fflT@-f) (2.1) 

SJ  = 2 (( S @I T@ - f )  + A( 7’8 @I T@ - f)) (2.2) 

since T is a linear self-adjoint operator. This shows that J is stationary (i.e. SJ = 0) at 
@ = q5 the exact solution of equation (1.1). Further, the stationary values of J are found 
from 

where A is a real constant. The first variation of J(A, @) leads to 

T@ - f +  AT(T@-f) = 0. (2.3) 

ATu = - U .  (2.4) 

If A = 0 then q5 is the unique stationary point. Also if A # 0 and T does not have an 
eigenvalue - l / A  then U = 0 and again q5 is the unique stationary point. If, however, T 
has an eigenvalue - l / A  (A # 0) then it is easy to verify that 4 = q5 + aw is a stationary 
point where a is real constant and w is any eigenvector of T with eigenvalue - l / A  and 
that 

Writing TQ, - f  = U this becomes 

J(A, *I = -(q5If). (2.5) 
In this analysis we assume that T does not have a zero eigenvalue so that T-’ exists and 
the solution of equation (1.1) is unique. 

The second variation of J at any stationary point is given by 

S’J = ~((S@~~TS@J+A(S@~~T’S@)).  (2.6) 
If we now assume that T has a discrete spectrum so that we have the eigenvalue 
equation 

TU, = Aiwi (2.7) 
where the eigenvectors wi form a countably complete orthonormal set in the Hilbert 
space H. Thus for arbitrary S @  in H we can write 

S @  = 1 biwi 
i 

and consequently 

S2J  = 2 1 b?(Ai +AA:). 
I 

(2.9) 
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If we now choose Al so that 

A = A 1 >  - 1 / A j  (2.10) 

for all A i  then J(A, Q,) becomes a minimum principle at the unique stationary point 
Q, = 4. Similarly a choice 

A =  A 2 d  - l / A i  (2.11) 

for all A i  # 0 leads to a maximum principle. With these choices we have 

J(Ai,  Q,)z -(4If)>J(A2, +) (2.12) 

for all Q,, belonging to H. In this paper most of the examples considered are such that 
*T is a completely continuous operator (an operator which maps every set of bounded 
functions in H into a compact set and is also known as a compact operator (Pryce 1973)) 
so that it is bounded and possesses a discrete spectrum. In one example T is a 
Sturm-Liouville differential operator which has a discrete spectrum and is such that the 
extension of its Green function is completely continuous (see Pryce 1973). 

As an example of the theory described consider the Kirkwood-Riseman integral 
equation 

(2.13) 

where -1 s x s 1, 0 <a < 1 and A < 0. The Hilbert Space El for this example is the 
space of square-integrable real functions of x with inner product defined by 

1 

(@I?) = Q,(x)?(x)  dx. 
-1 

(2.14) 

We can write 

T = I - A R  (2.15) 

where I is the identity operator and I? is the integral operator defined by 
1 

kQ, = I-, Q,(t)\x - t ( -a  dt, O < C Y < l .  (2.16) 

Since the kernel of I? is symmetric it follows that I? is self-adjoint on H. It can be shown 
(Auer and Gardiner 1955) that the kernel of K may be represented by 

(2.17) 

where a,, > OVn and {P',p'(x)} is a set of Gegenbauer polynomials. These polynomials 
are orthogonal with respect to the weight function (1 -x2)-' so that 

(2.18) 

where N ( n ,  p )  is a numerical factor. From equations (2.17) and (2.18) we can show that 
K is positive definite with a discrete spectrum. Since A < O  this implies that the 
eigenvalues of T, A i  are such that 

A i  3 1. (2.19) 
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We can thus take Al = 0 and A2 = - 1 and these lead to 
1 

J ( - l , q ) S { - l  ~ $ ( x ) d x s J ( O , Q )  

VQ, q belonging to H. Accurate trial functions can be obtained in the form 
N 

Qj.,r(X) = (1 - X 2 ) - P  1 b,Pi!)(X). 
n = O  

(2.20) 

(2.21) 

Using the trial functions of the form (2.21) enables us to use the relationship (2.18), 
thereby reducing the calculation. One- and two-parameter trial functions were used 
corresponding to N = 0 or 1. The results are given in tables 1 and 2 which contain the 
upper and lower bounds respectively and are compared with those obtained by Arthurs 
and Anderson (1977) using the same functionals but taking two-parameter approxi- 
mations of the form 9 =Ax2 + B. There is qualitative agreement between the bounds 
obtained except for the case Q = 0.8, A = -2 where there seems to be a discrepancy. The 
bounds using trial functions of the form (2.21) seem to be better for larger values of IA 1 .  
This is probably due to the fact that we have chosen more complicated trial functions 
which will be significant when for large / A  I the contribution from the integral operator k 
becomes important. 

3. Nonlinear theory 

Consider now equation (1.3). 

T4 =f(4) (3.1) 

T$n+1= f ( @ n  ), n = 0 , 1 , 2 . .  . , (3.2) 

where in general f ( 4 )  is a nonlinear function of 4. Consider also the related equations 

in a suitably chosen real complete Hilbert Space H where Qn is a variational approxi- 
mation to &. Let 4 denote the exact solution of (3.1); then 

T(4 -$n+1) = f ( 4 ) - f ( @ n )  = f ’ ( o n ) G @ n  (3.3) 

where a@,, = 4 -an and U,, = t4 + (1 - t)~#+, is some function belonging to the space and 
t is such that 0 < t < 1. Here we have used Taylor’s expansion of f ( Q n )  about 4. 
Assuming that T has non-zero eigenvalues, so that the solution of equation (3.3) is 
unique for fixed an, T-’ exists and is linear. Putting S&+l = 4 - $n+l we have 

G & + 1 =  T-‘f’(U,)GQn. (3.4) 

Let @,,+I denote a variational approximation to +b,+~; then since $,+I, @,,+I, a,,, 4 and 
on all belong to H 

IISan+lll= 114 -@n+lIl 

Here the norm lIuII for U belonging to H denotes ( u ~ u ) ” ~  and we are assuming lIf’(o,,)l\ is 
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bounded. Further we assume T has a discrete set of eigenvalues A i ( A i  # 0) and 
therefore 

(3.6) 

for U belonging to H. Fixing On in equation (3.2) we can approximate the exact solution 
$n+l to an arbitrary degree of accuracy using the linear variational techniques discussed 
in 9 2. The complementary principles become in this case 

and are such that 

for suitably chosen ill and Az. Thus we can make the quantity - as small as 
we please by increasing the flexibility of @ n + l  and varying the parameters in @,+I. The 
convergence of the sequence {@,} to the exact solution of equation (3.1) will thus 
depend on 

(3.9) ll?(vn)Il 
M = I I ~ - l l l l l f ) ( ~ n ) l l  = ~ 

IA 01 

where A. is the eigenvalue of smallest modulus. If M is large we can rearrange equation 
(3.1) to 

T4 = T 4 + b ( f ( 4 ) - T 4 )  (3.10) 

where b is a real parameter. Equation (3.2) now becomes 

T $ n + 1 =  T @ n  + b ( f ( @ n )  - T@n) = F(@n). (3.11) 

In this case M is replaced by 

M = 11(1- b)Z+ bT-lf'(v,)Zll, (3.12) 

Z being the identity operator. Equation (3.5) thus becomes 

Ilmn+1Il =z MIIS@,II + lI$ni- l  - @n+ll/. (3.13) 

Increasing the number of parameters in @ n + l  and varying these parameters we can 
make I l $ n + l  - @ n + l l l  as small as we please. We can therefore ensure 

ll$4l+l -@n+l / /<  €I /m7+1 l /  

for arbitrary E > 0. Thus if 

(3.14) 

O < M + € < 1  (3.15) 

is satisfied 

IIS@'n+lli< IIS@'nlI (3.16) 

and the process converges. There are many ways of forming the sequence {@,}. A 
procedure adopted in this paper is as follows. Let map denote a trial function containing 
p variational parameters for each iterate n = 0, 1, 2 , .  , , . At the nth iteration we 
choose the p parameters so that J(A1, W , + I , ~ )  is stationary where f = f ( m n p ) .  Denote by 
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E , + ~ , ~  the error in the trial function w , + ~ , ~  so that 

Il$,+l -w"+l,pll E , + l , p .  

Thus we obtain 

II8wn+iJC I/(1- b ) I +  bT- ' f ' (oap)I / /+ ~ , + i , ~ .  

(3.17) 

(3.18) 

Fixing p in the trial functions wnP and letting n + CO, then if the sequence {wnP}  has a limit 
wp (say), that is if convergence is attained we have 

II6WPII s lK1- b ) I +  b T - ' f ' ( ~ , ) ~ l l l l ~ ~ p l l +  E p  zz ~ p / I ~ w p l l +  E,. (3.19) 

Provided that b is chosen so that Mp < 1 we then have 

/16w,II < €,/(I - M p ) .  (3.20) 

This procedure can be carried through using J ( A z ,  4 )  instead of J(A1, t+b) but in the 
examples we shall consider J ( A 1 ,  4 )  is a simpler functional. We can now use J ( A 2 ,  4 )  
with f =!(U,) to find bounds for ep.  With this choice for f we have 

(3.21) 

(3.22) 

= min(Ao + AIA i, Io + Alhi) (3.23) 

where A. is the smallest positive eigenvalue of T and i o  is the largest negative 
eigenvalue. Thus 

(3.24) 2 
e p  (J(Ai, w p ) - J ( A 2 ,  t+b))/N 

and consequently 

(3.25) 

In practice to use these bounds in (3.20) to obtain a bound for 116wp/l we need to estimate 
Mp. One possibility is 

M, 11(1- b ) I  + b T - ' f ' ( ~ ~ ~ ) I l l .  (3.26) 

The sequence {a,,} can now be continued by increasing p ,  the number of variational 
parameters, taking initiallyf to bef(w,). To start the procedure it is necessary to obtain 
a suitable Oo so that in the first calculation f =f(@J. From (3.24) and (3.20) we deduce 
that 

j16w,J12 zz cs (3.27) 

2 s (J(Ai, w p ) - J ( A 2 ,  w p ) ) / N .  

where C is a constant and 

S = min(J(Al, w,) - J ( A z ,  4)).  (3.28) 
* € H  
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In these calculations we shall use S or an upper bound for S,  for example 

J(A1, U P )  - J ( A z , w p )  (3.29) 

as a measure of the convergence. 

4. Example calculations 

To illustrate the nonlinear theory we consider first the integral equation 

f$k*f$  = 1 
where 

which arises in communication theory (Saltzberg 1965, Nowosad 1966). Here k̂  is a 
self-adjoint positive definite operator and f(@) = l/@. The Hilbert space H for this 
problem is taken to be the space of square integrable functions in 0 S x 6 7r/2 so that the 
inner product is 

../ 2 

(1111112) = lo U ~ ( X ) U Z ( X )  dx. (4.3) 

Since 

then k“ is a completely continuous operator with a discrete spectrum {A;}. To obtain 
bounds for the smallest eigenvalue A. we use 

E - (02 - E ~ ) ~ / ~  6 A,, G E (4.5) 

where E=(Q,lk*@) and D=(k*@lk*O) (see Pauling and Bright Wilson 1935). By 
optimising Q, we obtain A. 2 0-0223 so that AI  = 0 and Az = -45 form acceptable 
choices of A for minimum and maximum principles respectively. As an initial approxi- 
mation for the iterative process we use Q0 = a (a  constant) and choose U so that 

L ( a )  = llla - l/a112 (4.6) 

is a minimum. This gives a = uo = wol  = 1.4627. The sequence is then continued with 
0, = wfl1 = a, (a  constant) using J ( 0 ,  w,~) and taking b = i. This procedure leads to 
w1 = 1,4628 where J ( 0 ,  wl)  = -1,5708. In this case 

S 6 J (0 ,  ~ 1 )  -J(-45, x). (4.7) 

dJ/dbi = 0 (4.8) 

(4.9) 

Taking x = b1 (a  constant) and choosing b l  so that 

where f =f (wl ) ,  we obtain S s 0.0073. We now continue the sequence using 
2 

wn2 = a n 2  + Cn2X 

which leads to 

wz= 1*4518+0*0141x2. (4.10) 
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This may be compared with the approximations derived by Arthurs and Coles (1977) 
namely 1.36+0.06x2 and 1*36+0.08x2. As the measure of convergence we take 
x = w z  for simplicity and obtain 

S C 0.0070. (4.11) 

We shall now consider the more difficult example 

-v2+ + 4 - 4 3  = 0 (4.12) 

which has applications in elementary particle theory (Shiff 1962) and electromagnetic 
theory (Finkelstein et a1 1951). It has also been used as an example of nonlinear 
variational theory by Robinson (1971). Three trivial solutions are 0, f 1. It has been 
shown by Finkelstein using phase-plane analysis that in the spherically symmetric case 
there exists a countably discrete set of solutions. Denoting these by q5N(r),  N = 0, 1, . . . 
with a discrete set of initial values d N ( 0 )  Finkelstein shows that 

q5 k4N = 0 (4.13) 

and 

dN(r1-A exp(-r)lr  asr+cr,  (4.14) 

where A is a constant. If we only consider this set of solutions, then writing P N ( r )  = 
rq5N(r) it is easy to verify that (4.12) is equivalent to the integral equation 

PN(r) = - min(r, s) 
fom S 

(4.15) 

If we put PN(r)=exp(-r)q and rearrange (4.15), adding and subtracting q(r), we 
obtain 

.m 

Tq = q ( r )  + J m i n k  s) exp( - s ) q ( s )  ds 
0 

m 

= (1-exp(-r))q(r)+[ min(r, s) exp(-3s)/s2ds = f ( q ) .  (4.16) 
0 

We now consider the real Hilbert space of exp(-r) square integrable functions with the 
inner product 

(4.17) 

In this space T i s  linear, self-adjoint and completely continuous so that we can apply the 
theory of § 3. AI = 0 and Az = - 5  are suitable choices for the minimum and maximum 
principles. Finkelstein also shows that c # I ~ ( Y )  possesses N zeros in 0 s  r < W. To find a 
variational approximation for &(r) we may consider trial functions of the form 

q =ar  (4.18) 

(a  being a constant). In order to find a zero-order approximation (Do to q50 we take (Do of 
the form (4.18) where a is chosen so that 

J x a )  = IIT(ar) -f(4lI2 (4.19) 

is a minimum. This leads to U = ao=wol =4.5838. The sequence is continued with 
@,,I =a, (a constant) taking b = -1 in equation (3-11). This leads to w1 = 4.7683 and 
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J ( 0 ,  w l )  = -73.8948. We now define x = blr and choose b l  so that 

(d/dbi)J( -2, X )  = 0 (4.20) 

where F ( 0 , )  = F ( w l )  in equation (3.11). This leads to 

-74.9633 = J (  -2, X )  

These are approximate bounds for 

- (*l /F(wl))  s J ( 0 ,  ~ 1 )  = -73,8949. (4.21) 

-(*IF(*)) (4.22) 

where 

T* = F(*)  (4.23) 

and give the result 

S S 1.0685. (4.24) 

This clearly indicates that we need to use more complex trial functions. The cal- 
culations were now repeated with trial functions of the form 

wn2 = a, exp[-(a, - l ) r ]  = a W(a,) (4.25) 

to satisfy the 

(4.26) 

with b = 1 so that F(wn2)  = f ( w n 2 )  and woz = w l .  Choosing a,+l and 
stationary conditions 

(aJ(0, wn2)/aa,+1) = (aJ(0,  w n z ) / a a n + 1 )  = 0 

we obtain the two nonlinear equations 

a,+l(W(a,+l)ITW(an+l))-(W(an+l)If(anW(an))) = 0 (4.27) 

and 

a,+l(W‘(cY,+l)ITW(a,+~)) - (W’(cYn+l)/f(a,W(a,))) = 0 (4.28) 

(assuming a,+l # 0). Solving these iterativelyleads to w2 = 5,3137 W(1.5656). Taking 
x 2  = bZ W(1.5656) and optimising J ( - : ,  x 2 )  with f = f ( w 2 )  gives b2 = 5.3155, 

(4.29) -9.591 1 s - ( $ 2 / f ( ~ 2 ) )  S -9.5872 

and 

S <J(O,w2)  - J(-;, ~ 2 )  = 0.039. (4.30) 

This indicates that the procedure is converging. In order to continue the sequence (0,) 
we would now need to increase the complexity of the trial functions. Care is needed in 
this case since a function of the form ( a  + br) exp(yr) for example may have a zero in 
0 s r < CO and consequently cause convergence to 41(r)  instead of &(r). 

5. More general nonlinear equations 

We now consider the more general equation 

T4 = f ( 4 ) - L 4  
where f is nonlinear and L is a linear operator not necessarily self-adjoint. Following 
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where afl is a variational approximation to 4,. The analysis of 9 3 can be carried 
through with ( f ’ ( v , )  -L)60f l  replacing f ’ ( u , ) 6 @ ,  and f ( @ )  -L@ replacing f ( @ ) .  

As an example of the more general theory we consider the Thomas-Fermi equation 
for an atomic system with a nucleus of charge 2 at the origin. The spherically 
symmetric equation which describes the normal state of the system is 

d24/dX2 = 43/2/x1/2 o s x < c u ,  (5.3) 

where 4(0) = 1, 4 ( x )  - 0 and xd’(x) - 0 as x +CO.  We can rewrite equation (5.3) in the 
form 

T4 = - x d24/dx2 - (2 - X )  d4 ldx  + 4 

(2 - X )  d4/dx + 4 = f ( 4 )  -L4. (5.4) - 3 / Z x  1/2 - - -  

We now consider the Hilbert space of x exp( - x)  square integrable functions in 
O S X < C O .  Thus 

( u l v ) =  J u(x)u(x)x exp(-x)dx. 
0 

( 5 . 5 )  

T is a self-adjoint Sturm-Liouville differential operator on this space with a discrete set 
of eigenvalues {A,} and a corresponding complete set of eigenvectors It can be 
shown that 

4, =dln(x) /dx  (5.6) 

where L,(x) are the Laguerre polynomials and that A, = n, n = 1,2 ,3 ,  . . . . Thus A, a 1 
and we may choose Al = 0 and A2 = -1. The trial functions which we use in this 
calculation will have the simple form 

q = exp( - ax) .  (5.7) 
To find an acceptable Q0 = exp( - i 0 x )  we choose a. so that 

(5 .8 )  

is a minimum which gives a. = 1.046 738. The sequence is continued with @,, = 
exp( -- a,x) and the condition 

leads to 

g(a,+1, a,) = 0, (5.10) 

a nonlinear equation in a,,+1 and a,,. 

then have 
Solving g(p,  p )  = 0 numerically gives p = 0.731 745. Defining 4 = exp( -px)  we 

J(-1, $) = 0.099 3428 < - ( $ I f ( $ )  -L4) S J ( 0 , d )  = 0.1 13 9443 (5.1 1) 
where 

TJ = f ( 4 )  - L$. (5.12) 
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Also the measure of convergence, S,  is such that 

S s J ( 0 ,  d)-J ( - l ,  i j ) = O . O 1 4  6015 ( f  = f ( L i ) )  (5.13) 

compared with the bound 

S =S J(0,  @o) - J(-1, @o) = 0.070 39 ( f  = f ( @ o ) ) .  (5.14) 

The total electron energy E for this model is related to the exact solution (b by 

(5.15) 

where C is a constant depending on 2. This value has been obtained by a numerical 
solution of equation (5.3) (Bush and Caldwell 1931, Kobayashi et a1 1955). From the 
results in this paper 

CE(q*) =0*7071. (5.16) 

Arthurs and Robinson (1969) have also considered the variational solution of equation 
(5.3) with trial functions of the form (5.7) and obtain values of CY = 0.93 and CY = 1.383 
from functionals which provide upper and lower bounds for the total energy. 

6. Conclusion 

This paper shows that the linear variational theory introduced in the earlier papers and 
described in § 2 can be used as a variational-iterative procedure to solve nonlinear 
problems. The main purpose of this paper is to try to provide iterative schemes for the 
solution of such nonlinear equations which provide criteria for convergence. The real 
quantity S provides such a measure. In some cases bounds for ( $ I f ( $ ) )  are required 
where T(b = f ( + )  and these calculations also provide approximate bounds for this 
quantity. 
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